 The probability of a leaf cutting successfully taking root is 0.05 	Bill owns a restaurant. Over the next four weeks Bill decides to carry out a sample survey to obtain the customers' opinions.
Find the probability that, in a batch of 10 randomly selected leaf cuttings, the number taking root will be	(a) Suggest a suitable sampling frame for the sample survey. (1)
(a) (i) exactly 1 (ii) more than 2 (5)	(b) Identify the sampling units. (1)
A second random sample of 160 leaf cuttings is selected.	(c) Give one advantage and one disadvantage of taking a census rather than a sample survey.(2)
(b) Using a suitable approximation, estimate the probability of at least 10 leaf cuttings taking root.(3)	Bill believes that only 30% of customers would like a greater choice on the menu. He takes a random sample of 50 customers and finds that 20 of them would like a greater choice on the menu.
X= number of cuttings that take root	(d) Test, at the 5% significance level, whether or not the percentage of customers who would like a greater choice on the menu is more than Bill believes. State your hypotheses clearly.
X~ B(10, 0.05)	nypomeses clearly. (6)
a) $P(x=1) = (10) 0.05 \times 0.959 = 0.3152$	a) list of all customers who eat at the restaurant
ii) $P(x>2) = 1 - P(x \le 2) = 1 - 0.9885 = 0.0115$	b) Customers chosen in the sample
b) np = 160×0·05 = 8	c) advantage - everyone meluded more accurate
y= cuttings taking root from Sample 4 160	disadvantage - take too long, expensive
y~ Po (8)	d) x = customers wanting more choice
P(y = 10) = 1-P(y = 1-0.7166 = 0.2834	x~B(50,0.3) Ho: p=0.3 Hi: p>0.3
- P - DA - STE	P(x > 20) = 1-P(x < 19)
	=1-0.9152 = 0.0848
	8.48% > 5% : result is not statistically signific
	. not enough evidence torget null hypothesi

(2) es that only 30% of customers would like a greater choice on the menu. He ndom sample of 50 customers and finds that 20 of them would like a greater the menu. at the 5% significance level, whether or not the percentage of customers who like a greater choice on the menu is more than Bill believes. State your heses clearly. (6) t of all customers who eat at e restaurant itomers chosen in the sample vantage - overyone meluded more accurate advantage - take too long, expensive customers wanting more choice B(50,0·3) Ho: p=0.3 H1: p>0.3 > 20) = 1-P(XS19) =1-0.9152 = 0.0848 >5% : result is not statistically significant enough evidence torget null hypothesis : accept Bill's claim.

3. The continuous random variable X has cumulative distribution function given by

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{6}x(x+1) & 0 \le x \le 1 \\ 1 & x > 2 \end{cases}$$

(a) Find the value of a such that P(X > a) = 0.4

Give your answer to 3 significant figures.

(b) Use calculus to find (i) E(X)

(ii) Var(X).

a)
$$f(x(a) = 0.6 \Rightarrow) f(a) = 0.6$$

 $\frac{1}{6}a(a+1) = 0.6 \Rightarrow) a^2 + a = 3.6$

=)
$$(a + \frac{1}{2})^2 = 3.6 + 0.25 = 3.85$$

=) $a = -\frac{1}{2} + \sqrt{3.85}$ $\therefore a = 1.46$

5)
$$f(x) = \frac{d}{dx} f(x) = \frac{d}{dx} (6x^2 + 6x)$$
 of x

$$f(x) = \frac{1}{3}x + \frac{1}{6}$$
 05x52 0, otherwise.

$$f(x) = \int x f(x) dx = \int_0^2 \frac{1}{3}x^2 + \frac{1}{6}x dx$$

$$= \int \frac{1}{9}x^3 + \frac{1}{12}x^2 \Big|_0^2 = \frac{11}{9} - 0 = \frac{11}{9}$$

$$= \left[\dot{q}x^3 + \dot{1}2x^2 \right]_0^2 = \left[\dot{q} - 0 \right] = 0$$

$$V(x) = E(x^{2}) - E(x)^{2}$$

$$E(x^{2}) = \int x^{2}f(x)dx = \int_{0}^{2} \frac{1}{3}x^{3} + \frac{1}{6}x^{2}dx$$

:
$$V(x) = \frac{16}{9} - \left(\frac{11}{9}\right)^2 = \frac{23}{81}$$

4. The number of telephone calls per hour received by a business is a random variable with distribution Po(λ).

Charlotte records the number of calls, C, received in 4 hours.

A test of the null hypothesis H_0 : $\lambda = 1.5$ is carried out.

H. is rejected if C > 10

(3)

(8)

(a) Write down the alternative hypothesis.

(1)

(3)

(3)

(b) Find the significance level of the test.

Given that P(C > 10) < 0.1

(c) find the largest possible value of λ that can be found by using the tables.

b) 1=1-Sin lb => 1=6 in 4 hrs

:- ASL = 4-267.

(a) Find the probability that there will be exactly 3 breakdowns in the next month.

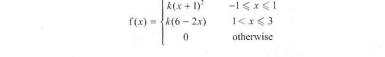
(b) Show that the probability that there will be at least 2 breakdowns in the next month

(c)

(d)

(e) The continuous random variable X has probability density function given by

$$f(x) = \begin{cases} k(x+1)^2 & -1 \le x \le 1 \\ k(6-2x) & 1 < x \le 3 \end{cases}$$


(b) Show that the probability that there will be at least 2 breakdowns in the next month

5. A school photocopier breaks down randomly at a rate of 15 times per year.

b)
$$P(x/2) = 1 - P(x=0) - P(x=1)$$

= $1 - e^{-1.25} - e^{-1.25} \times 1.23 = 0.335 (30p)$

P(y>1)=1-P(y <1)=1-P(y=0)-P(y=1)

= | - 0.355.. 12 - (12) 0.355 x 0.645

where k is a positive constant.

- (a) Sketch the graph of f(x). (b) Show that the value of k is $\frac{3}{20}$
- (c) Define fully the cumulative distribution function F(x).

(2)

(5)

(5)

(3)

(d) Find the median of X, giving your answer to 3 significant figures.

b)
$$\int f(x) dx = 1 \Rightarrow \int u(x^2+2x+1)dx + \int u(6-2x) dx$$

= $u\left[\left[\frac{x^3}{3}+2^2+x\right]^{\frac{1}{2}}+\left[6x-x^2\right]^{\frac{3}{2}}\right] = 1$

=
$$L[(3)-(-\frac{1}{3})+(9)-(5)]=1$$
 $\frac{20}{3}k=1$ $\therefore k=\frac{3}{20}$
c) $F(x)=\int f(x)dx$
 $-1 \le x \le f(x) = \frac{3}{20}\int_{-1}^{x} t^{2}+2t+1dt = \frac{3}{20}\left[\frac{t^{3}}{3}+t^{2}+t^{2}+t\right]_{1}^{x}$

$$= \left(\frac{x^3}{20} + \frac{3}{20}x^2 + \frac{3}{20}x\right) - \left(\frac{1}{20} + \frac{3}{20} + \frac{3}{20}\right) = \frac{x^3}{20} + \frac{3x^2}{20} + \frac{3x}{20} + \frac{3}{20}$$

$$= \left(\frac{x^3}{20} + \frac{3}{20}x^2 + \frac{3}{20}x\right) - \left(\frac{1}{20} + \frac{3}{20} + \frac{3}{20}\right) = \frac{x^3}{20} + \frac{3x^2}{20} + \frac{3x^2}{20}$$

$$F(1) = \frac{8}{20} : |< x \le 3 | F(x) = \frac{8}{20} + \frac{3}{20} \int_{1}^{x} 6-2t dt$$

$$= \frac{8}{20} + \frac{3}{20} \left[6t - t^{2} \right]_{1}^{x} = \frac{18}{20} x - \frac{3}{20} x^{2} - \frac{15}{20} + \frac{8}{20}$$

$$\therefore F(x) = \begin{pmatrix} 0 & \text{if } x < -1 \\ \frac{1}{20}(x^{3} + 3x^{2} + 3x + 1) & \text{if } -1 \le x \le 1 \\ \frac{1}{20}(-3x^{2} + 18x - 7) & \text{if } 1 < x \le 3 \\ 1 & \text{if } x > 3 \end{pmatrix}$$

$$(1) F(Q_{2}) = 0.5 \quad \text{Since } F(1) = 0.4 \quad |< Q_{2} \le 3$$

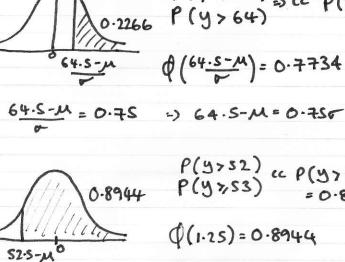
$$\frac{1}{20}(-3x^{2} + 18x - 7) = \frac{1}{2} \Rightarrow -3x^{2} + 18x - 7 = 10$$

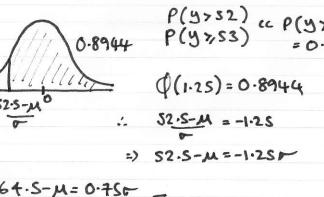
$$\therefore 3x^{2} - 18x + 17 = 0 \quad x = |8 \ge \sqrt{18^{2}} - 4(3)(17)$$

$$\therefore Q_{2} = |\cdot| 17$$

$$F(x) = \begin{pmatrix} 0 & \text{if } x < -1 \\ \frac{1}{20}(x^3 + 3x^2 + 3x + 1) & \text{if } -1 \le x \le 1 \\ \frac{1}{20}(-3x^2 + 18x - 7) & \text{if } 1 < x \le 3 \\ 1 & \text{if } x > 3 \end{pmatrix}$$

$$F(Q_1) = 0.5 \quad Since \quad F(1) = 0.4 \quad [


$$\frac{1}{20}(-3x^2 + 18x - 7) = \frac{1}{2} = 3 - 3x^2 + 18x - 7 = 10$$


$$\therefore 3x^2 - 18x + 17 = 0 \quad x = \frac{182}{18^2} \cdot \frac{18^2}{18^2} \cdot \frac{4(3)(17)}{6}$$

$$\therefore Q_2 = \frac{1.17}{18}$$$$

Using a normal approximation the probability that Y is at least 65 is 0.2266 and the probability that Y is more than 52 is 0.8944 Find the value of n and the value of p. (12)P(y,65) => cc P(y>645) 0.2266 P(y>64) = 0.226 = 0.2266

7. The random variable $Y \sim B(n, p)$.

: 64.5-M=0.75-52.5-M=-1-25 12 = 2 = : = = 60 M=np => 60 = np 02 = np(1-p) => 36 = np(1-p)